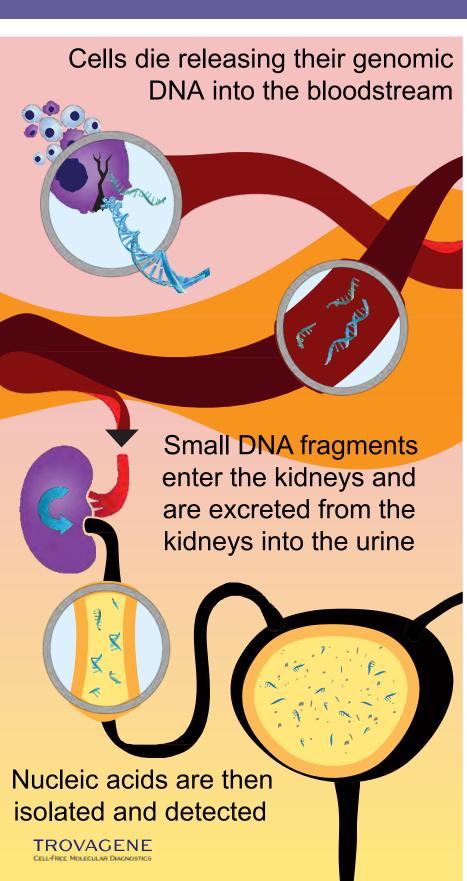
Detection and Monitoring of BRAF and KRAS Mutations in Cell-Free Urinary DNA of Metastatic **Cancer Patients by Droplet Digital PCR**

TROVAGENE CELL-FREE MOLECULAR DIAGNOSTICS

Filip Janku, Gerald S. Falchook, Sarina A. Piha-Paul, Aung Naing, Apostolia M. Tsimberidou, Veronica R. Holley, Daniel D. Karp, Ralph G. Zinner, Siqing Fu, Jennifer J. Wheler, David S. Hong, Funda Meric-Bernstam, Vanda M. Stepanek, Rayjalakshmi Luthra, Lorieta Leppin, Latifa Hassaine, Karena Kosco, Jason C. Poole, Mark G. Erlander


Department of Investigational Cancer Therapeutics and Molecular Diagnostic Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX; Trovagene Inc., San Diego, CA

BACKGROUND

> BRAF and KRAS mutations confer a survival and growth advantage to cancer cells and can be used for selection of targeted therapies

➤Cell-free (cf) DNA detected in the urine of individuals with cancer offers an easily obtainable, low-risk, and inexpensive source of biologic material for mutation analysis

Longitudinal assessment of BRAF and KRAS mutations in urinary cfDNA can be used for monitoring of molecular changes throughout cancer therapy

METHODS

 \succ A total of 27 patients with advanced cancers and 5 patients with Erdheim-Chester disease (histiocytic disorder with high prevalence for *BRAF* mutations), who were previously tested for mutations in BRAF and/or KRAS a CLIA-certified laboratory were prospectively enrolled

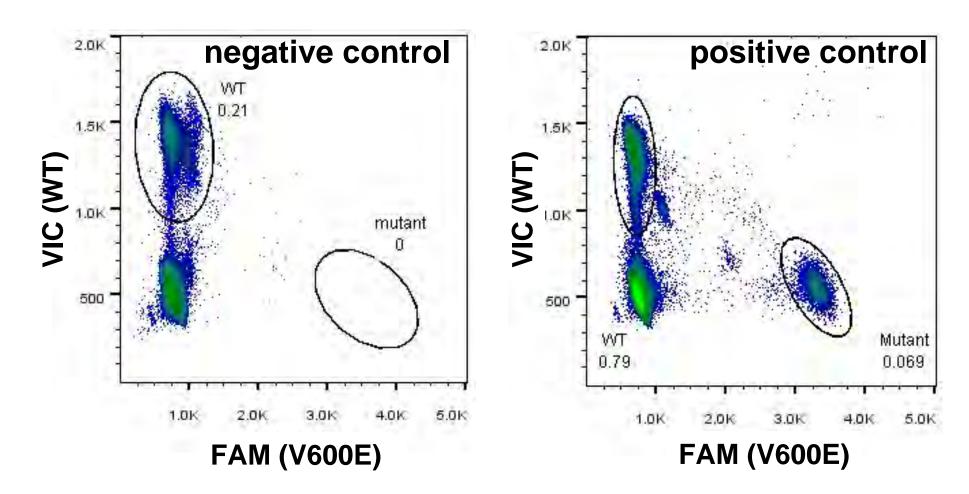
Single or multiple sequential urine samples (90-110ml or 24 hour urine collection) for cfDNA mutation analysis were obtained at baseline and during therapy

Iwo-Step Assay Design for 28-30 bp footprint					
~	tagA				
STEP ONE : Pre- amplification with wild-type suppression to decrease amplification of WT patient DNA		→ M ← WT Blocker → WT	tagB		
STEP TWO: Amplification w/ primers complimentary to	A	M	_ Taqman Probe ← B		
A,B tags- digital droplet PCR)		M M M M			

DNA template with mutation ("M"); DNA template with no mutation (Wild Type ("WT"

> Assays for quantitative assessment of *BRAF* V600E, KRAS G12D and G12V mutations in urinary cfDNA were developed using droplet digital PCR (RainDance, Billerica, MA) with enrichment of mutant DNA fragments by preamplification of BRAF and KRAS genes

Concordance between mutation analysis results from urinary cfDNA and tumor tissue from the CLIA laboratory was determined


> Whenever possible longitudinal assessment of mutation status in sequential urine samples was performed

RESULTS

> Cell lines with respective mutations (*BRAF* V600E, *KRAS* G12D or G12V) were used as a positive control

Thresholds for mutation detection were determined by assessing data from 50 healthy controls and 39 patient samples using a classification tree. Minimizing the percentage of false negatives was given a higher importance than minimizing false positives. Thresholds were defined as no detection – wild-type (<0.05%), borderline (0.05% - 0.107%), and detected - mutation (>0.107%)

Urinary cfDNA BRAF Mutations in Cancers

Detection limits for BRAF V600E mutation in urinary cfDNA

- \succ V600E mutation: > 0.107% of mutant DNA
- ➢ V600E borderline: 0.05%-0.107% of mutant DNA
- > V600E wild-type: <0.05% of mutant DNA

Agreement rate (CLIA V600E vs. urinary cfDNA V600E mutation or borderline mutation): 19/20 (95%)

Tumor Type	Tumor (CLIA)	Urinary cfDNA V600E BRAF mutation (%)*
Non-Small Cell Lung Cancer	V600E	V600E (0.17)
Papillary Thyroid Carcinoma	V600E	V600E (0.17)
Non-Small Cell Lung cancer	V600E	V600E (1.08)
Melanoma	V600E	V600E (37.9)
Non-Small Cell Lung Cancer	V600E	V600E (0.68)
Colorectal Cancer	V600E	V600E (21.12)
Melanoma	V600E	V600E (0.13)
Colorectal Cancer	V600E	V600E (1.49)
Glioblastoma	V600E	V600E (5.36)
Velanoma	V600E	Borderline V600E (0.07)
Vielanoma	V600E	Wild-type (0.04)
Vielanoma	V600E	V600E (0.15)
Adenocarcinoma of Unknown Primary	V600E	Borderline V600E (0.07)
Colorectal Cancer	V600E	V600E (416.58)
Non-Small Cell Lung Cancer	V600E	V600E (2.93)
Vielanoma	V600E	V600E (0.97)
Papillary Thyroid Cancer	V600E	V600E (1.66)
Velanoma	V600E	V600E (1.01)
Ovarian Cancer	V600E	Borderline V600E (0.08)
Appendiceal Cancer	V600E	V600E (3.43)

Appendiceal Cancer

* In patients with several sequential urine collection samples with highest mutant fraction are recorded

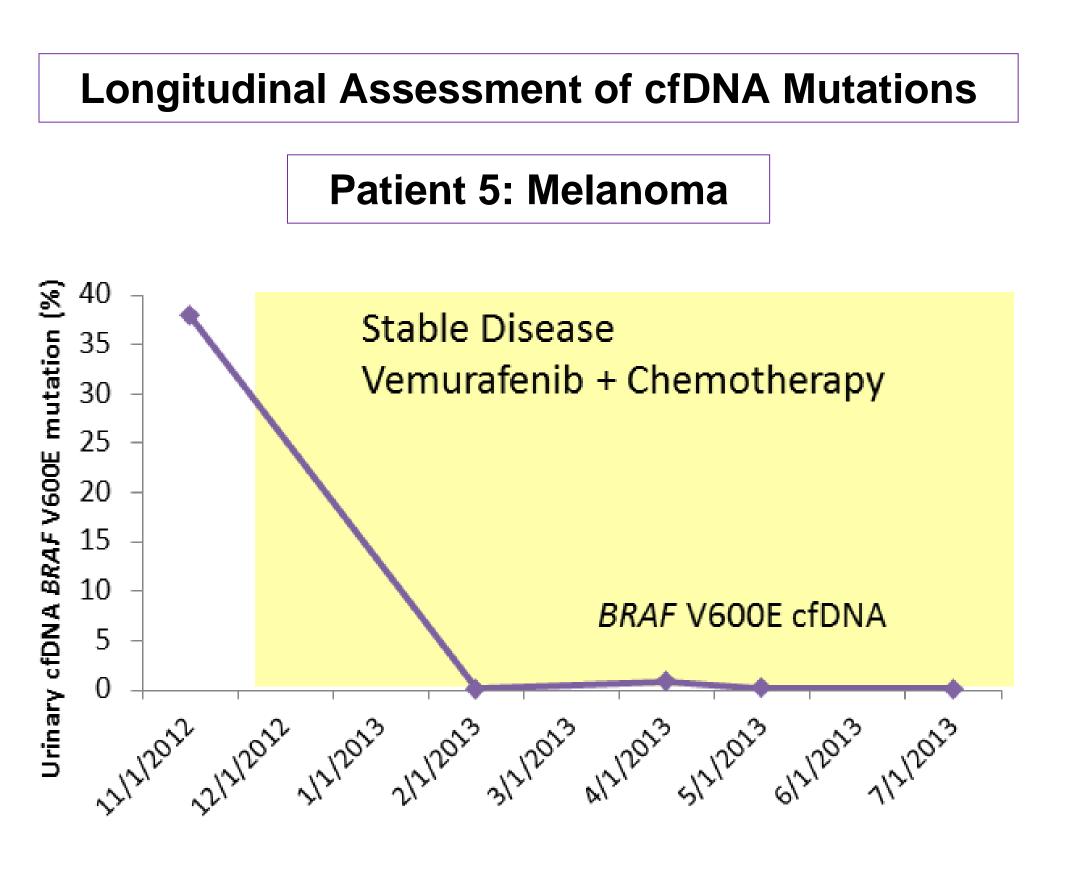
RESULTS

Urinary cfDNA BRAF Mutations in Erdheim-Chester Disease

Erdheim-Chester Disease Involvement	Tissue (CLIA)	Urinary cfDNA V600E <i>BRAF</i> mutation (%)
Bones, cardiac, CNS, kidneys	V600E*	V600E (129.50)
Bones, kidneys	Unknown	Wild-type (0.02)
Skin	NTRK1 rearrangement*	Wild-type (0.01)
Bones	Unknown	V600E (0.16)
Bones	Unknown	V600E (4.94)

* Molecular analysis was done with Targeted Next-Generation Sequencing (Foundation One, Foundation Medicine, Cambridge, MA)

Urinary cfDNA KRAS Mutations in Cancers


Detection limits for KRAS G12 mutations in urinary cfDNA

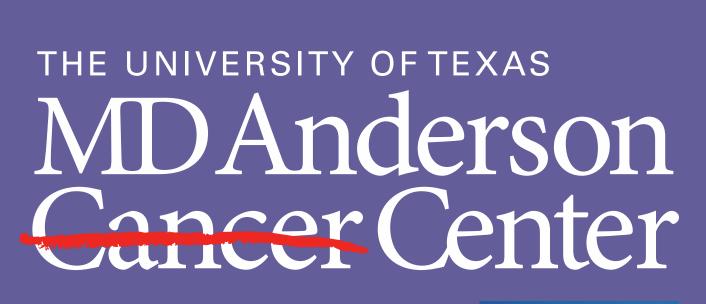
> G12 healthy control: 234 mutant fragments

➢ G12 mutation: 489-2825 mutant fragments

Agreement rate (CLIA G12 vs. urinary cfDNA G12 mutation): 7/7 (100%)

Tumor Type	Tumor (CLIA)	Baseline G12 <i>KRAS</i> -mutant urinary cfDNA (mutant fragments)
Colorectal Cancer	G12D	G12D (489)
Colorectal Cancer	G12D	G12D (563)
Colorectal Cancer	G12D	G12D (1935)
Colorectal Cancer	G12D	G12D (2825)
Colorectal Cancer	G12V	G12V (1168)
Ion-Small Cell Lung Cancer	G12V	G12V (1083)
Appendiceal Cancer	G12D	G12D (1231)

2 0.8 0.4



> Detection of actionable BRAF and KRAS mutations with droplet digital PCR in urinary cfDNA from patients with advanced cancers is feasible with good preliminary concordance with mutation testing of tumor tissue in the CLIA laboratory

> BRAF mutations were detected in urine from patients with Erdheim-Chester disease including patients who did not have adequate tissue for molecular analysis

> Mutations in urine cfDNA should be further investigated for longitudinal assessment of effects of anticancer therapies

Making Cancer History®

RESULTS Patient 16: Colorectal Cancer Stable Disease Vemurafenib + Cetuximab 0.6 BRAF V600E cfDNA 0.2 11/2013 211/2013 311/2013 11/2013 511/2013 611/2013 11/2013 a11/2013 a1 Patient 44: Appendiceal Cancer Stable Disease Dabrafenib + Pazopanib BRAF V600E cfDNA 113/2013 16/2013 12012013 23/2013 130/2013

CONCLUSIONS

fjanku@mdanderson.org